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Abstract

A nonparametric Bayesian estimator F of the survival function

F constructed from time-sequential progressively censored observations

is found to subsume several estimators of F utilized in practice. Weal.

convergence of F is developed and the limiting process is found to

coincide with that obtained when complete response profiles of the

sample are available, leading to suitable application of F v.:ith consequent

reductions in costs and tii;e and without loss of asymptotic accuracy.
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§1. INTRODUCTION/SUMMARY.

The basic formulation of the problem proposed here has been

introduced and studied from a Bayesian viewpoint in [5]. It involves

consideration of a set of independent random lifetimes XI,...,Xn v hich

may be deterred from complete observation due to censoring on the right

by another set of independent variables YI,...,Y n. Thus the observable

set of data is {(Zi,6i): 1 < i < n} where for each 1 < i < n,

(1.1) Zi = Xi  Y i and ai = 0 or 1 according as X. > Yi or not.

This is the commonly called random censorship model which has

received considerable attention among researchers in the past several

years. However, as has been observed in [5] there is a broad class of

experiments pertaining to clinical trials and reliability in which the

Zi are observed sequentially and cost and/or time considerations often

entail termination of experimentation before all Zi have been observed.

For example a study may be curtailed at the k = k(n)th smallest order

statistic Z(k) , I < k < n and then, in effect, the investigator has

at his disposal only the data

(1.2) {(Z(i), i): I < i < k(n ) ) with i = 1 or 0 according as Z(i)

is a true lifetime or censoring time.

Statistical procedures based on data of the type (1.2) are

referred to as progressively censored schemes (Sen et. al (1973, 1978)).

Thus instead of prolonged observational periods until responses from

the entire sample have been recorded, experimentation may be ceased at

an appropriate intermediate stage with an attendant desirable reduction

in costs and time.

i
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In J 5 1 the Bayes estimator Fk(n) of the survival function

(1.3) F(t) = P[X1 > t1F], t > 0

has been obtained from the data (1.2), under squared-error loss when F fululows

a Dirichlet process prior. We have noted there that Fk(n) yields as

special cases, the Ferguson (1973) estimator of F whenever all

XP ... IXn are observable; the usual empirical survival function of

X1 ..... IXn and the estimators given by Kaplan and Fier (1958) and

Susarla and Van Ryzin (1976). Our objective in this paper is the in-

vestigation of the weak convergence of Fk(n).

Ile shall show here that the process {n'-(F k(n)(t)-F(t)):

0 t < T), T < - has exactly the same asymptotic properties as the

process {n n (t)--F(t): 0 < t < TJ provided

lira inf nk(n) > 1-P1Z1 > T F.I and the sequences {Xi: i > 11,

{Yi' i > 1) being each independent and identically distributed (iid)

and independent of each other. In view of this it is not unreasonablv.

in practice to terminate experimentation at the k(n)th stage when

n- k(n) is close to unity. For example if k(n) = n-c log n with

c > 0 large, substantial savings in time and cost can be afforded witheut

sacrifice of asymptotic accuracy yielding a very cost-effective procedure

especially when per unit observational costs are prohibitively high.

The substantive material of the paper appears in the next two

sections. Section 2 introduces some notation and assumptions together

with a discussion of our estimator and special cases of it. The proof

of the weak convergence is detailed in Section 3 and we make a few

concluding remarks in the final section.
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§2. Preliminaries

Consider n(> 1) units under surveillance for which we record

either the time to decrement (survival time) X or its competing cen-

soring time Y upto and including the k -th response, k E {1,... ,nl.n n

Suppose the survival distribution F of X is a Dirichlet process

with parameter measure (% on the Borel subsets of the positive real

line IR+ = (0,-) and, given F, the survival times X1I .. ,Xn  are

iid with distribution function (d.f.) (1-F). Furthermore, when the

corresponding censoring times Y1. .... Yn are iid with continuous right

df G on (0,-) and independent of (F,XI ... X n), we have demonstrated

in C 5 ] that under weighted squared-error loss the Bayes estimator

Fk of the survival curve F of (1.3) can be written

(2.1) F knM = Bn(0) n(t)

where
UMt + N+Wt + (n-k )IZt >It

(2 .2 ) B (t) . n .n )
(0)+ n

fa( (.).<, -- n ' -' ' ' N (Z._j)) (n kn .z j  < t,6. = 0]

'~ (.i) - ~
j a(ZnZ _ ) + (n-kn)+1

(2.3) W n(t) C n L (-n

+ (Z(kn)) + (n-k n)F zi (k
( kn) +( ) n)<t

S(z (knY

with the abbreviation a(u) = ((u,o , ) and
k(2.4) N+ ( ny[

n z~l)(j
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with [Ai denoting the indicator of theset A. 'W shall assuue throughout

that ((T) > 0 and G(T) > 0 where 0 < T < - is fixed.

The estimator (2.1) lay be regarded as a natural extension of

an estimator of F(t) obtained by Suszrla and Van Ryzin (1976) when

the complete data set (Zi, i): 1 < i< n) is available. Indeed

(2.1) yields this estimator by setting k = n. On tile other hand if

there are no observed censoring timos in the data {(Z(i), i): 1 < i < k I

(2.1) reduces to
( ) + N+(t) + (n-k )[Z~j 1 [Z)) + (

(2.5) F(t) nkj
(0) + n ( (. (kn)

which in turn we may view as a generalization of Ferguson's (1973) estir'ator

aft) + rf'*(t)
- n .. when censoring is absent and kn  n. The Ferguson estimator

reduces to the empirical survival function (of XI ... X ) in the

limit as ((0) -> 0, while (2.1) for t< 7 and th. Susarla-Van Ryzin

estimator (that is (2.1) with kn = n) yields the product-limit estimator

of Kaplan and Meier (1958), which itself reduces to the empirical survival

function in the absence of censoring. lie thus notice that several

estimators of the survival curve that have found favor in a wide variety

of practical situations have a common (hitherto unborn) progenitor - the

estimator Fk of (2.1).
n1
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§3. Weak convergence of Fk

The strategy here is to express n2(Fkn F) in a more tractable

form in which its behavior will be made transparent from the separate

behavior of B and W . We begin with B . Define
n n n

in
(3.1) H (t) =n ) [Z. > ti, H(t) = Prz 1 > tjFi F(t)G(t).

j=1

n n n (Then from (2.4) N+(t)n = {nln(t)-(n-k)IZ(kn) > t and in conjunction

with (2.2) this yields

(3.2) B (t)-H(t) = -{c((O) + n}- {n(Hn (t)-H(t))-nH (t)Z < t
p n (k)-

Writing S1- IT for the sup-norm on (O,T] we get

(3.3) JIB n-HI.r < {r<(O) + n)-1 {nlIy-II! T + n[Z(kn) < Ti + a(O,T)}.

In the sequel we shall repeatedly use the fact that !,11 -IT o O0(n-)n *T p
if { < "2. Thus with (i < we will also have from (3.3)

(3.4) JIBn-HliT 
= Op(n - )

once we demonstrate

(3.5) PU17(k < TIF] =o P(n-"), whatever ~

Now assume that the sequence of stopping numbers Kn n > 1}

satisfies

(3.6)- li inf n-k > I-H(T), with y E (0,11.(3.6)
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Then there exists an integer n0  (dupending on y and H(T)) such

that n-'kn > li{y + 1-H(T)} whenever n > nO. Hence with n > n

P[Z(k < TIF < P[(1-H (T))-(1-I(T)) > .(y-(1-H(T)))IF-.
nn

We bound this right hand side probability by using the Pernstein inequality

(see Hoeffding (1963)), whence

(3.7) P[Zkn < TIFf1 < exp(--pny-(l-H(T))}
2 )

(kn

and now (3.5) obtains, whatever 0.

To handle W we have to work much harder. (In what followsn

we use f-I to denote the reciprocal of the function f rather than

its inverse.) First write (2.3) in the form

(3.8) Wn : Wn , W n,2 ' where 14n ,2 (t) { :Z(kn )+ (n-kk ) U

a (Z(kn) d

Then since a(u) is nonincreasing in u, we obtiin

P m Wn,2 11T < [Z(k) _ T. { + (n-kn (Z(kn))}

<[Zkn < Tina -1(T),

n

which in turn yields, in view of (3.5)

(3.9) II PM Wn 2 T  o (nO), whatever S.

Now introduce

1n
(.10) (t) = n< t, 0]; (t) = PZ < t,61  OlF].

j=1 -

Then from (2.3), (3.1) and (3.8) we can express
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Z(kn1 )^t

(3.11) M Wn1(t) = f . + (W(x) + nl1n(x))- IdH(X).
n 0

On utilizing the expansion r,(1 - x) = x + ,2 Y (1) j1 xjj=O j+2'

0 - x < 1 in the integrand we rewrite (3.1) as

(3.12) W (t) + K

Since both ,(x), 1 (X) are nonincreasing in x, we get on simplification
n

rl'n (T)
n "n 2 'T 2n

{c, (T)+nl1n (T) )2 {a(T)+nln (T)- }

which in conjunction with the fact that n (T) 4(T) + o p(n -F( wth

ti < I) yields

(3.13) SKn2,,T o (n-e), whenever <

t
Now observe that H of (3.10) can also be ritten f F(x){-dG(x)i

and threfore, 1:1nev ,r tl(t) 0, A C , c-(t) 01 . Hence

from (3.12)

(31)1 nZ(kn)^At j~()4nI()-t 1

(3.14) Knl(t) T G- 1 (t) = nf n +nl (x)ll nX) - I H-(x)d.(x)
0n 0

f lZ~kn) > xJ(natx) + ni ln(x)}- - H1 (x))dn(X)

t t -+ f1(x)d{li 1W - R I- I 1z(k) < x"I m-i i(X)0 0

SKn,3 (t) + K n,4 (t) + Kn, 5 (t).

We first dispose of Kn, 4  and K n, 5  By noting that H-I(x) is non-

decreasing in x and performing an integration-by-parts, we easily obtain

II
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JKn,4 1l T < 2 - ()Fn R r

and in view of the fact that iln-)iT o , <

(3.15) iK = Op(n -) whenever < .

Also Kn,5 T < K1 (T)} (1)IZ < T.i, which gives, using (3.5),

(3.16) JIKn,5 IT = op(n -f.)" whatever 6.
T

Finally, I < n{ (x)+ nin(X)}-1 - t- 1(x) x)dn(X)

0

< {(u(T)+ nll (T))t(T) -i H (T){u(0) + n11H - I" }n n n T

which leads to

(3.17) JJK ll  o (n- ), whenever f < .
n,31T p

Thus collecting our results (3.9) and (3.13) throLIgh (3.17), %-,,e finally

ob:ain for (3.8)

(3.18) j' n Wn - p G- p(n-P), whenever 6 <

We are now in position to express n2(Fk -F) in a governable form.

Write

(3.19) (Fkn-F) = BnWnn-HG-

= (B n-H)G-1 + (I n-G- 1)Bn .

x ~2COn employing the expansion e 1 + x + X- ec where c Iies between

0 and x, we can write

,i
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W- G -G W-# 1 ) + GleCL n i -n 6-1)2, and so from (3.19)

we have

2 (IFk -F) - ni(Bn -t1)G 1 
- n3 (#,Y Wn~, G -)I Gk n n'

'2 1 1 + n - B I - TG (T)
n -] J +1 I f! - T 10 4 W n - G T 0 _

which in view of (3.4) and (3.18) is o (n-), for son-e < . This
p 1.

reduces consideration of weak convergence of nI(Fkn-F) to that of
kn

(3.20) n'-'(Bn ) 1 .3-1
(2 + n2 (i, W ; G- )HG

In (3.20) we can further replace W11 by W n, in view of

(3.9). The final simiplifcation is obtained by writing (see 3.14),
tt

0 0n
t. I~Z > x i, (X) t Jz k < 1

where Cnt M f---n)- 01...... f -x I-- (.n -- x d ~
..... ..) x )0 H (x)), (x) + nil (X) !  0 If (X)n

(0) R n (0 (T)
B'T .. .. , and again

1ln (T){,(T) + nHn (T)n IH (T)

C = Op(n-), whenever < . Thus the weak convergence of

In"(F (t)-F(t)): t E [O,TI} is tantamount to that of
n tt

(3.22) n{Bn (t)-II(t)G- I(t) + n"'{ f Hl1dH - I dH}
n1 1 11 f di

0 0

which is precisely the final reduction obtained by Susarla and Van Ryzin

(1978). We must however emphasize here that the interval endpoint T

is restricted through (3.6). As noted earlier the estimator Fkn
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reduces to that studied by Susarla and Van Ryzin (1976, 1978) when

k , n, in which situation (3.6) deqenerates to the condition II(T) > 0

that they imposed.

The analysis of the process (3.22) has been dealt with in Susarla

and Van Ryzin (1978) and reslow and Crowley (1974). Ile therefore state

out, results for F kn in

Theore:Suppose is defined by (2.1)-(2.4) and the sequence
n

{kn: n - 11 satisfies (3.6). Assumie F(t), G(t) continuous on

IO,TI. ThIn the process {n1'2(F(t)-F(t)): t E [O,TI} converges weakly

to a Gaussian process

p+ i I 'di I II-Q + H2 Qd}I

0 0

where P,Q are thl&i:selves wean zero Gaussian processes with a covarimace

structure given for s < t, by

Cov(P'(s), P(t)) I1(t)(l-I1(s))

Cov(Q(s), NOt) = R(s)(1-N)'t)

Cov(P(s) , Q(t)) I(1-11(s))

Cov (Q (S) , t)) M Ti(s)II(t) .

Indeed U has mean zero and covariance given for s < t by

s -  .
Cov(U(s), U(t)) = -F(s)iU(t) I 1I1 Fdi

0

°° ~ ~ ~ ~I .... ,... N, AM -
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4. Concluding, Reijncrks.

In this paper we have assumed the censoring variables Y1 .... Yn

to be lid. Under appropriate conditions our results can be extended to
the case where the Yi 's have different distributions. In addition

to the weak convergence result for {Fk n -- 1) one can demonstrate

the uniform strong consistency and uniform t&ean-square con--itency oF

{Fk n - IU as a estimator of F on [O,TI.

Finally confidence bands for tF(t): t E IO,T1 can be calculilted

in terms of {Fk (t): t E [O,TI} using the distribution of the limitinu

process {U(t): t E I O,T I of our Theorem. Note that the process

In Fkn(t) - (t))
{n2 ......... .- : t C I O,TI} converges weakly to a tiuo-transformedF(t)

Prownian motion.

gr
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